191 research outputs found

    Calibration of the Distance Scale from Cepheids

    Get PDF
    We have used the infrared surface brightness technique to obtain a new absolute calibration of the Cepheid PL relation in optical and near-infrared bands from improved data on Galactic stars. The infrared surface brightness distances to the Galactic variables are consistent with direct interferometric Cepheid distance measurements, and with the PL calibration coming from Hipparcos parallaxes of nearby Cepheids, but are more accurate than these determinations. We find that in all bands, the Galactic Cepheid PL relation appears to be slightly, but significantly steeper than the corresponding relation defined by the LMC Cepheids. Since the slope of our LMC Cepheid sample is clearly better defined than the one of the much smaller Galactic sample, we fit the LMC slopes to our Galactic calibrating Cepheid sample (which introduces only a small uncertainty) to obtain our final, adopted and improved absolute calibrations of the Cepheid PL relations in the VIWJHK bands. Comparing the absolute magnitudes of 10-day period Cepheids in both galaxies which are only slightly affected by the different Galactic and LMC slopes of the PL relation, we derive values for the LMC distance modulus in all these bands which can be made to agree extremely well under reasonable assumptions for both, the reddening law, and the adopted reddenings of the LMC Cepheids. This yields, as our current best estimate from Cepheid variables, a LMC distance modulus of 18.55 +- 0.06.Comment: to be published in: "Stellar Candles", Lecture Notes in Physics (http://link.springer.de/series/lnpp

    Very accurate Distances and Radii of Open Cluster Cepheids from a Near-Infrared Surface Brightness Technique

    Full text link
    We have obtained the radii and distances of 16 galactic Cepheids supposed to be members in open clusters or associations using the new optical and near-infrared calibrations of the surface brightness (Barnes-Evans) method given by Fouque & Gieren (1997). We discuss in detail possible systematic errors in our infrared solutions and conclude that the typical total uncertainty of the infrared distance and radius of a Cepheid is about 3 percent in both infrared solutions, provided that the data are of excellent quality and that the amplitude of the color curve used in the solution is larger than ~0.3 mag. We compare the adopted infrared distances of the Cepheid variables to the ZAMS-fitting distances of their supposed host clusters and associations and find an unweighted mean value of the distance ratio of 1.02 +- 0.04. A detailed discussion of the individual Cepheids shows that the uncertainty of the ZAMS-fitting distances varies considerably from cluster to cluster. We find clear evidence that four Cepheids are not cluster members (SZ Tau, T Mon, U Car and SV Vul) while we confirm cluster membership for V Cen and BB Sgr for which the former evidence for cluster membership was only weak. After rejection of non-members, we find a weighted mean distance ratio of 0.969 +- 0.014, with a standard deviation of 0.05, which demonstrates that both distance indicators are accurate to better than 5%, including systematic errors, and that there is excellent agreement between both distance scales.Comment: LaTeX, 11 Figures, 5 Tables, to be published in The Astrophysical Journal, Oct. 10, 1997 issu

    Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model

    Get PDF
    We have applied a relativistic Tolman-Bondi model of the Virgo cluster to a sample of 183 galaxies with measured distances within a radius of 8 degrees from M87. We find that the sample is significantly contaminated by background galaxies which lead to too large a cluster mean distance if not excluded. The Tolman-Bondi model predictions, together with the HI deficiency of spiral galaxies, allows one to identify these background galaxies. One such galaxy is clearly identified among the 6 calibrating galaxies with Cepheid distances. As the Tolman-Bondi model predicts the expected distance ratio to the Virgo distance, this galaxy can still be used to estimate the Virgo distance, and the average value over the 6 galaxies is 15.4 +- 0.5 Mpc. Well-known background groups of galaxies are clearly recovered, together with filaments of galaxies which link these groups to the main cluster, and are falling into it. No foreground galaxy is clearly detected in our sample. Applying the B-band Tully-Fisher method to a sample of 51 true members of the Virgo cluster according to our classification gives a cluster distance of 18.0 +- 1.2 Mpc, larger than the mean Cepheid distance. Finally, the same model is used to estimate the Virgo cluster mass, which is M = 1.2 10^{15} Msun within 8 degrees from the cluster center (2.2 Mpc radius), and amounts to 1.7 virial mass.Comment: 12 pages, 7 figures. Astronomy and Astrophysics, in press (accepted May 31, 2001

    Evidence for a Universal Slope of the Period-Luminosity Relation from Direct Distances to Cepheids in the LMC

    Full text link
    We have applied the infrared surface brightness (ISB) technique to derive distances to 13 Cepheid variables in the LMC which have periods from 3-42 days. The corresponding absolute magnitudes define PL relations in VIWJK bands which agree exceedingly well with the corresponding Milky Way relations obtained from the same technique, and are in significant disagreement with the observed LMC Cepheid PL relations, by OGLE-II and Persson et al., in these bands. Our data uncover a systematic error in the p-factor law which transforms Cepheid radial velocities into pulsational velocities. We correct the p-factor law by requiring that all LMC Cepheids share the same distance. Re-calculating all Milky Way and LMC Cepheid distances with the revised p-factor law, we find that the PL relations from the ISB technique both in LMC and in the Milky Way agree with the OGLE-II and Persson et al. LMC PL relations, supporting the conclusion of no metallicity effect on the slope of the Cepheid PL relation in optical/near infrared bands.Comment: 4 pages, to appear in the proceedings of the "Stellar Pulsation and Evolution" conference, Monte Porzio Catone, June 200

    Infrared Surface Brightness Distances to Cepheids: a comparison of Bayesian and linear-bisector calculations

    Full text link
    We have compared the results of Bayesian statistical calculations and linear-bisector calculations for obtaining Cepheid distances and radii by the infrared surface brightness method. We analyzed a set of 38 Cepheids using a Bayesian Markov Chain Monte Carlo method that had been recently studied with a linear-bisector method. The distances obtained by the two techniques agree to 1.5 \pm 0.6% with the Bayesian distances being larger. The radii agree to 1.1% \pm 0.7% with the Bayesian determinations again being larger. We interpret this result as demonstrating that the two methods yield the same distances and radii. This implies that the short distance to the LMC found in recent linear-bisector studies of Cepheids is not caused by deficiencies in the mathematical treatment. However, the computed uncertainties in distance and radius for our dataset are larger in the Bayesian calculation by factors of 1.4-6.7. We give reasons to favor the Bayesian computations of the uncertainties. The larger uncertainties can have a significant impact upon interpretation of Cepheid distances and radii obtained from the infrared surface brightness method.Comment: 27 pages with 9 figure

    Are the HI deficient galaxies on the outskirts of Virgo recent arrivals?

    Full text link
    The presence on the Virgo cluster outskirts of spiral galaxies with gas deficiencies as strong as those of the inner galaxies stripped by the intracluster medium has led us to explore the possibility that some of these peripheral objects are not newcomers. A dynamical model for the collapse and rebound of spherical shells under the point mass and radial flow approximations has been developed to account for the amplitude of the motions in the Virgo I cluster (VIC) region. According to our analysis, it is not unfeasible that galaxies far from the cluster, including those in a gas-deficient group well to its background, went through its core a few Gyr ago. The implications would be: (1) that the majority of the HI-deficient spirals in the VIC region might have been deprived of their neutral hydrogen by interactions with the hot intracluster medium; and (2) that objects spending a long time outside the cluster cores might keep the gas deficient status without altering their morphology.Comment: Accepted for publication in ApJ. 4 pages, 3 figures. Uses emulateapj

    The Araucaria Project. First Cepheid Distance to the Sculptor Group Galaxy NGC 7793 from Variables discovered in a Wide-Field Imaging Survey

    Get PDF
    We have detected, for the first time, Cepheid variables in the Sculptor Group spiral galaxy NGC 7793. From wide-field images obtained in the optical V and I bands on 56 nights in 2003-2005, we have discovered 17 long-period (24-62 days) Cepheids whose periods and mean magnitudes define tight period-luminosity relations. We use the (V-I) Wesenheit index to determine a reddening-free true distance modulus to NGC 7793 of 27.68 ± 0.05 mag (internal error) ± 0.08 mag (systematic error). The comparison of the reddened distance moduli in V and I with the one derived from the Wesenheit magnitude indicates that the Cepheids in NGC 7793 are affected by an average total reddening of E(B-V)=0.08 mag, 0.06 of which is produced inside the host galaxy. As in the earlier Cepheid studies of the Araucaria Project, the reported distance is tied to an assumed LMC distance modulus of 18.50. The quoted systematic uncertainty takes into account effects like blending and possible inhomogeneous filling of the Cepheid instability strip on the derived distance. The reported distance value does not depend on the (unknown) metallicity of the Cepheids according to recent theoretical and empirical results. Our Cepheid distance is shorter, but within the errors consistent with the distance to NGC 7793 determined earlier with the TRGB and Tully-Fisher methods.The NGC 7793 distance of 3.4 Mpc is almost identical to the one our project had found from Cepheid variables for NGC 247, another spiral member of the Sculptor Group located close to NGC 7793 on the sky. Two other conspicuous spiral galaxies in the Sculptor Group, NGC 55 and NGC 300, are much nearer (1.9 Mpc), confirming the picture of a very elongated structure of the Sculptor Group in the line of sight put forward by Jerjen et al. and others

    Measurement of Source Star Colors with the K2C9-CFHT Multi-color Microlensing Survey

    Get PDF
    K2 Campaign 9 (K2C9) was the first space-based microlensing parallax survey capable of measuring microlensing parallaxes of free-floating planet candidate microlensing events. Simultaneous to K2C9 observations we conducted the K2C9 Canada-France-Hawaii Telescope Multi-Color Microlensing Survey (K2C9-CFHT MCMS) in order to measure the colors of microlensing source stars to improve the accuracy of K2C9's parallax measurements. We describe the difference imaging photometry analysis of the K2C9-CFHT MCMS observations, and present the project's first data release. This includes instrumental difference flux lightcurves of 217 microlensing events identified by other microlensing surveys, reference image photometry calibrated to PanSTARRS data release 1 photometry, and tools to convert between instrumental and calibrated flux scales. We derive accurate analytic transformations between the PanSTARRS bandpasses and the Kepler bandpass, as well as angular diameter-color relations in the PanSTARRS bandpasses. To demonstrate the use of our data set, we analyze ground-based and K2 data of a short timescale microlensing event, OGLE-2016-BLG-0795. We find the event has a timescale tE=4.5±0.1t_{\rm E}=4.5 \pm 0.1~days and microlens parallax πE=0.12±0.03\pi_{\rm E}=0.12 \pm 0.03 or 0.97±0.040.97 \pm 0.04, subject to the standard satellite parallax degeneracy. We argue that the smaller value of the parallax is more likely, which implies that the lens is likely a stellar-mass object in the Galactic bulge as opposed to a super-Jupiter mass object in the Galactic disk.Comment: Submitted to PAS

    Cepheid variables in the LMC cluster NGC 1866. I. New BVRI CCD photometry

    Full text link
    We report BV(RI)c CCD photometric data for a group of seven Cepheid variables in the young, rich cluster NGC 1866 in the Large Magellanic Cloud. The photometry was obtained as part of a program to determine accurate distances to these Cepheids by means of the infrared surface brightness technique, and to improve the LMC Cepheid database for constructing Cepheid PL and PLC relations. Using the new data together with data from the literature, we have determined improved periods for all variables. For five fundamental mode pulsators, the light curves are now of excellent quality and will lead to accurate distance and radius determinations once complete infrared light curves and radial velocity curves for these variables become available.Comment: To appear in ApJ Supp., AASTeX, 24 pages, 8 tables, 8 figure

    The Araucaria Project. An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables

    Full text link
    In a previous paper, we reported on the discovery of more than a hundred new Cepheid variables in the Sculptor Group spiral NGC 300 from wide-field images taken in the B and V photometric bands at ESO/La Silla. In this paper, we present additional VI data, derive improved periods and mean magnitudes for the variables, and construct period-luminosity relations in the V, I and the reddening-independent (V-I) Wesenheit bands using 58 Cepheid variables with periods between 11 and 90 days. We obtain tightly defined relations, and by fitting the slopes determined for the LMC Cepheids by the OGLE II Project we obtain reddening-corrected distances to the galaxy in all bands. We adopt as our best value the distance derived from the reddening-free Wesenheit magnitudes, which is 26.43 ±\pm 0.04 (random) ±\pm 0.05 (systematic) mag. We argue that our current distance result for NGC 300 is the most accurate which has so far been obtained using Cepheid variables, and that it is largely free from systematic effects due to metallicity, blending, and sample selection. It agrees very well with the recent distance determination from the tip of the red giant branch method obtained from HST data by Butler et al. (2004), and it is consistent with the Cepheid distance to NGC 300 which was derived by Freedman et al. (2001) from CCD photometry of a smaller sample of stars.Comment: Latex, Astronomical Journal in pres
    • 

    corecore